Israeli Researchers Make Breakthrough in Depression Treatment
Researchers from the Weizmann Institute have discovered unique “fingerprints” of a microRNA molecule that acts on serotonin-producing cells

Doubts about the effectiveness of antidepressants have been raised since they were invented, but now new research pinpoints why existing treatments don’t entirely work as they should.
According to the World Health Organization, mood disorders such as depression afflict about 10 percent of the global population. With so many people affected, the scientific community has invested much time and effort in understanding these diseases. Yet the molecular and cellular mechanisms that underlie these destructive ailments are still not fully understood.
While there are medications available to patients experiencing mood disorders, the existing anti-depressants are hardly sufficient: Some 60-70 percent of patients experience no relief from them. For the other 30-40 percent, that relief is often incomplete, and usually only comes after patients take the drugs for a prolonged period of time. In addition, there are many psychological and physical side effects associated with these drugs. New and more effective medications are clearly needed — an undertaking that requires, first and foremost, a better understanding of the processes and causes underlying the disorders.
Serotonin, colloquially known as the “happy chemical,” is a neurotransmitter that helps relay messages from one area of the brain to another. Many researchers believe that an imbalance in serotonin levels may be responsible for causing depression and other mood disorders.
In order to examine the veracity of this assertion, Weizmann Institute Prof. Alon Chen and Dr. Orna Issler researched the role of tiny molecules called microRNA molecules (molecules that regulate cellular activity) in the nerve cells that produce serotonin and made some surprising findings. They succeeded in identifying, for the first time, the unique “fingerprints” of a microRNA molecule that acts on the serotonin-producing cells. Through further experimentation, Chen and his team were able to find a connection between this particular microRNA (miR135) and two proteins that play a key role in serotonin production and the regulation of its activities. The findings recently appeared in “Neuron.”
This article was first published on NoCamels – Israeli Innovation News and was re-posted with permission. To continue reading this article on the site, click here.





